Developmental regulation of erythropoiesis by hematopoietic growth factors: analysis on populations of BFU-E from bone marrow, peripheral blood, and fetal liver.
نویسندگان
چکیده
Fetal hematopoiesis is characterized by expanding erythropoiesis to support a continuously increasing RBC mass. To explore the basis for this anabolic, nonhomeostatic erythropoiesis, the proliferative effect of recombinant hematopoietic growth factors on highly enriched hematopoietic progenitor cells from fetal and adult tissues were compared. Fetal hepatic BFU-E, unlike adult bone marrow (BM) or peripheral blood (PB) BFU-E, were capable of proliferating in response to erythropoietin in the absence of added GM colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3), and erythropoietin (Epo) directly stimulated the expansion of the fetal BFU-E pool in suspension culture. A murine monoclonal antibody (MoAb), Ep 3, was raised against enriched fetal liver progenitor cells, which detected all fetal BFU-E and which reacted with the erythropoietin-responsive, GM-CSF/IL-3-independent fraction of adult BM BFU-E and CFU-E. All adult PB BFU-E were Ep 3- but became Ep 3+ after stimulation with GM-CSF or IL-3. These data indicate that Epo plays a unique role in fetal hepatic erythropoiesis, stimulating proliferation of immature BFU-E in addition to promoting terminal differentiation of later erythroid progenitor cells. In addition, these results demonstrate a MoAb which detects all erythropoietin-responsive progenitor cells and distinguishes the BFU-E compartments in adult BM and PB.
منابع مشابه
Expression of latent hematopoietic progenitor cells in cultures of newborn and adult baboon liver.
The anatomic site of hematopoiesis changes during fetal development from the yolk sac to the liver and finally to the marrow. Factors controlling this switch in the site of hematopoiesis are unknown. We assayed erythroid colony (CFU-E) and erythroid burst (BFU-E) formation in fetal, newborn, and adult baboon liver and marrow to determine the growth requirements of primate hematopoietic progenit...
متن کاملDifferent stimulative effects of human bone marrow and fetal liver stromal cells on erythropoiesis in long-term culture.
The factors determining the predominantly erythroid direction of human fetal liver hematopoiesis are unknown. We compared the capacities of human fetal liver and bone marrow stromas to sustain fetal and adult hematopoiesis in long-term cultures. In various marrow-fetal liver combinations of stroma and recharge, the maintenance of erythroid (BFU-e) and myeloid (CFU-GM) precursors in the nonadher...
متن کاملDevelopment of pluripotent hematopoietic progenitor cells in the human fetus.
Pluripotent hematopoietic progenitor cells (CFU-GEMM), myeloid progenitor cells (CFU-GM), and erythroid progenitors (BFU-E) were studied in midtrimester human fetuses using the mixed colony assay. All three progenitor cell populations were detected at high levels in the fetal liver from 12 to 23 wk of gestation. Stem cells were first observed in the bone marrow at 15-16 wk of gestation, althoug...
متن کاملEffects of Recombinant Human Tumor Necrosis Factor on Highly Enriched Hematopoietic Progenitor Cell Populations from Normal Human Bone Marrow and Peripheral Blood and Bone Marrow from Patients with Chronic Myeloid Leukemia1
Previous studies using unseparated normal human bone marrow cells have indicated that recombinant tumor necrosis factor a (rTNF-a) can inhibit the //; vitro colony growth by normal granulocyte/macrophage (CFU-GM) and erythroid (BFU-E) progenitor cells in a dose-dependent manner. In the present studies, by using very low numbers of highly enriched normal bone marrow progenitor cell populations a...
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 74 1 شماره
صفحات -
تاریخ انتشار 1989